
İSTATİSTİK: JOURNAL OF THE TURKISH STATISTICAL ASSOCIATION

Vol. 6, No. 1, January 2013, pp. 1–9

issn 1300-4077 |13 |1 |1 |9

İSTATİSTİK
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Abstract : The paper investigates and gives an update on the empirical evidence for or against the
random walk theory in the crude oil market. The paper investigates whether there are periods when crude
oil prices follow the random walk process and periods when they deviate from the random walk theory
(mean reverting). Various studies often give conflicting results for the same study period. Some computations
conducted over the period of 2000-2005 lead to inconclusive results (Geman, 2007), suggesting that more
work remains to be done in this period and beyond. It is imperative to revisit mean reversion and random
walk in the context of crude oil as it has serious implication on modeling crude oil prices. In this paper, a
Garch model with time-varying properties is applied to capture periods when the random walk theory may
be true and periods when it may be false. This study concludes the existence of mean reversion for crude oil
price over the period 1980 to 1994 and a random walk as of February 1994 to the end of the study period in
2010. Prior to February 1994 some models, like arima models, might have been valid. Beyond this period,
models need to recognize the random walk in crude oil returns.
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1. Introduction
The thrust of the study is to investigate whether crude oil prices are mean reverting or follow a

random walk process. Crude oil presents an interesting case because it is the fundamental driver of
most economic activities in the world. Crude oil is vital in many industries and of great importance
to the maintenance of an industrialized modern economy. Higher crude oil prices have a direct
impact on macroeconomic variables such as inflation, Gross Domestic Product (GDP), investments,
recessions, and other macroeconomic variables (Cheong, 2009). Crude oil returns are related to the
global financial markets, including contracts, opinions, risk management and other related financial
derivatives.
It is thus important to investigate whether oil price predictions can be done with accuracy or

not. Forecasting crude oil future prices remains one of the biggest challenges facing econometricians
and statisticians. Some researchers found that crude oil prices follow a random walk, implying that
tomorrow’s expected crude oil prices should be the same as today’s value. If crude oil prices follow
a random walk, then prices would be very difficult, if not impossible to predict. It is imperative to
revisit mean reversion and random walk in the context of crude oil as it has serious implication on
modeling crude oil prices.
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This study investigates whether crude oil prices are mean reverting or follow a random walk
process at all time periods. The Augmented Dickey-Fuller (ADF) tests and the Garch model with
time-varying properties approach are used to investigate mean reversion and random walk process
in crude oil prices. Whilst the techniques adopted in this paper may be standard in empirical
finance, the approach as presented, with time varying parameters, has not been applied to crude oil
to the best of our knowledge. There are still gaps and updating that needs to be done in providing
the empirical evidence in the crude oil market.
The rest of this paper is organised as follows. Section 2 gives an overview of the random walk

model and related literature. Section 3 describes the empirical methods used in this study. In
Section 4, the data and results are reported and discussed. Section 5 provides a conclusion.

2. Literature Review
Geman (2007) used the following model to investigate the statistical properties of crude oil prices:

pt = ϕpt−1 + ǫt

to check whether the coefficient ϕ is significantly different from 1, where pt is the log of crude oil
price. The null hypothesis is the existence of a unit root (i.e. ϕ= 1). A p value smaller than 0.05
would reject the null hypothesis with a confidence level higher than 0.95. The bigger the p value,
the more the random walk is validated. Geman (2007) used the West Texas International (WTI)
oil spot prices over the period January 1994 to 2004. The author got an ADF p value of 0.651 for
spot prices of oil prices for the period January 1994 to October 2004. The result rejects the mean
reversion assumption over the whole period and confirms that log crude oil price follows a random
walk during this period.
However, Geman (2007) noted that a mean reversion pattern of crude oil prices prevails for a

shorter period from 1994 to 2000, and it changes into random walk as of 2000. The author used
three state variable models which incorporate stochastic volatility.
Bessembinder et al. (1995) analysed the relation between crude oil price levels and slope of the

futures term structure defined by the difference between a long maturity future contract and its
first nearby. Assuming that future prices are unbiased expectations (under the real probability
measure) of future spot oil prices, an inverse relation between prices and the slope constitutes
evidence that investors expect mean reversion in spot prices, as it implies lower expected future
spot prices when prices rise. The authors concluded the existence of mean reversion of oil price
over the period 1982-1991, however the same computations conducted over the period 2000-2005
leads to inconclusive results (Geman, 2007). Thus more work remains to be done in this period
and beyond.
Bernard et al. (2008) argue that research on crude oil price dynamics for modeling and forecasting

has brought out several unsettled issues. Although statistical support is claimed for various models
of price paths, many of the competing models differ with respect to their fundamental properties.
One such property is mean reversion. Pindyck (1999) says that unit root tests are inconclusive
in the analysis of real prices observed on a yearly basis. The author concludes that due to the
persistent characteristic of crude oil price, a very long and practically unavailable series is required
to perform reliable tests.

3. Methodology
A simple model for log returns

We define the natural logarithmic return (simple log return) of crude oil at time t as:

rt = log(Pt/Pt−1) = log(Pt)− log(Pt−1) = pt − pt−1

where Pt is the price of crude oil at time t.
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İSTATİSTİK: Journal of the Turkish Statistical Association 6(1), pp. 1–9, c© 2013 İstatistik 3

The simplest model which can be used to test for the random walk is the simple autoregressive
(AR(1)) model, namely:

rt = β0 +β1rt−1 + ǫt (3.1)

where rt = pt − pt−1, is the log return of crude oil price, β0 and β1 are the parameters that need to
be estimated and ǫt ∼ IID(0, σ2), pt = log(Pt) is the natural logarithm of the price of crude oil at
time t. If the crude oil price follows a random walk, β1 =0 and so

pt = β0 + pt−1 + ǫt (3.2)

the random walk with drift parameter β0.
The natural logarithmic transformation reduces the impact of heteroscedasticity that may be

present when you have large data sets with high frequency. The transformation also ensures that
predicted crude oil price is positive when anti-logs are taken. The model however does not cater
for changing volatility.
Three versions of the random walk are distinguished by Cambell, Lo and MacKinley (1997) and

also cited in Jefferis and Smith (2005: p.59) which depend on the assumptions of the error term,
namely ǫt. Under the first model, the error terms are independently and identically distributed with
a zero mean and constant variance, denoted by ǫt ∼ IID(0, σ2). In the second model, the error terms
are independent but not identically distributed, which allows for unconditional heteroscedasticity
in the ǫt or ǫt ∼NID(0, σ2

t ). The problem of heterogeneously distributed processes is relevant, since
crude oil prices have been found to display heteroscedasticity. In the third random walk model,
the error terms are uncorrelated and neither independent nor identically distributed as mentioned
in the research of Jefferis and Smith (2005). This paper will also focus on the third model, with
volatilities changing over time.
Equation (3.1) has constant parameters and the error terms are assumed to follow the usual

classical assumptions. With financial markets, the assumption of constant variance may be inap-
propriate as empirical evidence frequently finds that returns have a variance which changes sys-
tematically. Equation (3.1) cannot readily capture gradual deviations towards/from the random
walk over successive observations.
Garch approach with time varying parameters

Emerson et al. (1997) and Zalewska-Mitura and Hall (1999) have developed, using a Garch
approach, a test with time-varying parameters which detects changes towards/from the random
walk where the error process does not have a full set of NIID properties. The model checks for
changes towards/from the random walk and allows the error process to deviate from the property
of being normally independent and identically distributed. The test does 3 things: first, it checks
for the random walk; second, it detects changes from/towards the random walk, and third, it will
operate with a stochastic series for which the error process might not have a full set of NIID
properties.
The test is based on the following set of equations to constitute the model

rt = β0t +β1trt−1 + δσ2
t +µt (3.3)

µt|ψt−1 ∼N(0, σ2
t ) (3.4)

σ2
t =α0 +α1µ

2
t−1 + γ1σ

2
t−1 (3.5)

β0t = β0t−1 + v0t ; v0t ∼N(0, σ2
β0
) (3.6)

β1t = β1t−1 + v1t ; v1t ∼N(0, σ2
β1
) (3.7)

in which σ2
t is the conditional variance of the error term ǫt, a Garch (1,1) model. ψt is the information

set available at time t. α0, α1 and γ1 are parameters needed to model the changing volatility. This
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model has three important characteristics. First, the intercept, β0t and slope coefficient β1t can
change through time. However, the special cases where either or both of these are constant are
also included. Secondly, this model incorporates an error process in which the variance changes
systematically over time. Thirdly, the mean of the log return depends on its conditional variance
(level of risk).The basic insight is that risk-averse investors will require compensation for holding
a risky asset such as crude oil.
A maximum likelihood search procedure with a standard Kalman filter is used to estimate the

model with equation (3.3), the measurement equation, and the set of equations given by (3.5),
(3.6) and (3.7), the state equations. The Kalman filter sequentially updates coefficient estimates
and generates the set of βit’s, i= 0,1 and t= 1 · · ·T and their standard errors. If the crude oil log
returns follow a random walk with no drift, then a 100(1−α)% confidence band for each of β0t and
β1t should contain zero. The method will be applied to crude oil prices in this paper. The focus of
this study is to find out if crude oil prices follow a random walk process or is mean reverting.
ǫt and vit i= 0,1 are playing the role of both disturbances and state variables. This is somewhat

unusual. The Kalman filter is being used in the context of a model with Garch errors. The Kalman
filter in its present form is not operable. This is because past values of error terms are unobserv-
able. Nevertheless we may proceed on the basis that the model can be treated as though it were
conditionally Gaussian, and we will refer to the Kalman filter as being quasi-optimal(Harvey et al,
1992) (Moonis and Shar, 2002).
Extending the model

Zalewska-Mitura and Hall (1999) have an extension to the model in the previous section.

The test is based on the following set of equations:

rt = β0t +

p∑

i=1

βitrt−i + δσ2
t + ǫt (3.8)

ǫt|ψt−1 ∼N(0, σ2
t ) (3.9)

σ2
t =α0 +α1ǫ

2
t−1 + γ1σ

2
t−1 (3.10)

βit = βit−1 + vit ; vit ∼N(0, σ2
βi
) (3.11)

Such a model can again be modeled using the standard Kalman filter. The parameters required
to estimate time-paths of βit’s and δ, α0, α1, γ1 and all p values can be found by maximizing the
Likelihood Function. If the series rt is a random walk, the 100(1−α)% confidence bands for each
of the βit’s must contain zero.
Reasons for modeling Garch effects

Like many econometric time series, crude oil prices exhibits periods of unusually large volatility
followed by periods of relative tranquility. In such instances, the assumption of a constant variance
(homoscedasticity) is in appropriate. The volatility of crude oil prices is not constant over time,
a property called heteroscedasticity. Modelling such varying variances involves Garch modelling.
A distinguishing feature of a Garch model is that the error variance may be correlated over time
because of phenomenon of volatility clustering. Thus it is appropriate to use the Garch model
which incorporates an error process in which the variance is allowed to change systematically over
time. Hence, the model can detect gradual departures from the random walk (weak form efficiency)
through time.
Building AR (p) models
An important step in the model identification process is to find the order of the autoregressive
process for the log returns. There are three basic steps to follow to fit AR(p) models to time
series data. These steps involve plotting the data, possibly transforming the data, identifying the
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dependence orders of the model, parameter estimation, and diagnosis and model choice. The Box
Jenkins methodology using auto-correlations is used to identify the order of the model.
Model selection for ADF Tests
The lag order, in addition to a sample size can affect the finite sample behavior of the ADF test.
Proper correction for the lag effect in implementing the ADF test is desirable. Because appropriate
values for the ADF test can be easily computed with desirable accuracy from response surface
equation for any sample size and leg length, the analysis should be useful in practical applications
(Cheung and Lai, 1995). The number of the augmenting lags (p) is determined by minimizing
the Schwarts Bayesian information Criterion (SBI) or minimizing the Alkaike Information Crite-
rion(AIC). In this study the SBI is used and the software automatically selects the appropriate lag
length and hence the model.

4. Empirical results
This section discusses data source and data analysis. The data is on crude oil prices. The section

also discusses the results of the random walk process and the results of the ADF test. Lastly, results
from the Garch model with time-varying parameters approach are also discussed.
The data used in this study is monthly crude oil price from January 1980 to Septem-

ber 2010 with a total of 369 observations and is quoted in US dollars. The data is
a monthly crude spot price of European Brent. This data is from the World Bank
and the International Monetary Fund (IMF) and is available from the following website:
http://www.mongabay.com/commodities/price-charts/price-of-uk-brent-oil.html.
The data is used to form two sub-segments of data namely, January 1980 to January 1994 and

February 1994 to September 2010 segments. Two data segments are used for ADF tests for reasons
which will become obvious after observing the results from Garch modelling. The data series from
1980 to 2010 when analysed as a whole with ADF test, the results are somewhat different, for
instance, from 1980 to 1994, crude oil price does not follow a random walk model, i.e. it is mean
reverting. The data series is also transformed into monthly log returns series by taking the first
difference in the logarithm of the prices to give the log returns.
The ADF for the data in the period 1980 to 2010 (Full Data Set)

The ADF test is used to test stationarity for the data set from 1980 to 2010. Conclusions are made
in line with Geman’s (2007) paper. The ADF test statistic for untransformed crude oil price is
−2.946064 with p value of 0.1493. At 10% significance level, the null hypothesis of non-stationary
(unit root) is not rejected implying that crude oil prices are non stationary. Non stationarity implies
the random walk (German, 2007). Similar results are obtained for log crude oil price data from
1980 to 2010, the ADF test statistic is −2.414055 (p value 0.3716). The p value is greater than
10%, the null hypothesis of unit root is not rejected. This result implies that the log crude oil price
is non stationary and thus a random walk.
The ADF test for the data in the period January 1980 to January 1994 (First

Segment)
The ADF test statistic on untransformed crude oil price data for the period 1980 to 1994 is
−3.599062 with p value of 0.0829. Since p value is less than 10%, the null hypothesis of non-
stationary (unit root) is rejected implying that crude oil price is stationary over the period of the
first segment. This result is rather surprising and is not consistent with the results of the whole
data set ranging from 1980 to 2010. This result suggests that crude oil price is mean reverting over
the period 1980 to 1994. The ADF test statistic for log crude oil price data (period 1980 to 1994)
is −2.963231. The p value = 0.1459 which is more than 10% , meaning that the null hypothesis of
unit root is not rejected and hence implying that the log crude oil price are thus a random walk
process. To summarize the results thus far, the data series from 1980 to 2010 when analysed as a
whole, the conclusion is that the crude oil price follows a random walk model. However a shorter

http://www.mongabay.com/commodities/price-charts/price-of-uk-brent-oil.html
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period, called the first segment, the conclusion is that that crude oil price is mean reverting over

the period 1980-1994. However if the data is log transformed over the same period, 1980-1994, the

conclusion is that the log crude oil price follows a random walk.

The ADF test for the data in the period February 1994 to September 2010 (Second

Segment)

The value of the ADF test statistic is −1.703747 (p value = 0.4278), that is the hypothesis of a

stationarity is not rejected and the monthly crude oil price follows a simple random walk for the

period February 1994 to September 2010.The ADF test statistic of −2.816595 (p value of 0.1931)

for log crude oil is less negative than the critical value at 10% significant level, the null hypothesis

of unit root is not rejected. Thus the log crude oil price is non stationary hence implying a random

walk for log crude oil price. The conclusion is crude oil and log crude oil price is a random walk

over the period 1994-2010. These results of the random walk or mean reversion seem to depend

on the period under consideration and whether the data is log transformed or not. The behavior

of a random walk is more pronounced in log crude oil price.The conclusion is log crude oil price

is a random walk over the period 1980-1994 but for the untransformed data the conclusion is that

crude oil price is mean reverting for the same period (1980-1994).

Results from the Garch model with time varying parameters.

The results of using the Garch model with time varying parameter are presented in this section.

Figures 1, 2 and 3 present the results of the changes towards/from the random walk. The figures

show the paths of the estimated βit’s, i= 0,1,2 coefficient (see equation (3.8)) with their respective

95 per cent confidence bands. For the period 1980 to 2010, the best model using Box Jenkins

methodology is an AR (2) model:

rt = β0t +β1trt−1 +β2trt−2 +µt

Garch model with time varying parameters (period from 1980 to 2010)

Figure 1. β̂0t , Drift parameter for crude oil price from 1980 to 2010.
The estimates of β̂0t are shown by a solid bold line and its confidence

limits by dotted lines.

Consider Figure 1, which represents the results of the estimated drift parameter β̂0t for the period

1980 to 2010. The estimate, β̂0t , has constant value of −0.0072 and is insignificantly different from

zero considering its 95 percent confidence limit.
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Figure 2. β̂1t estimates for crude oil price from 1980 to 2010. The
estimates of β̂1t are shown by a solid bold line and its confidence

limits by dotted lines.

Figure 2 shows the results of the parameter β̂1t for the period 1980 to 2010. The estimate β̂1t

has an initial value of 0.39 and is significantly different from zero at 0.05 level. The magnitude of
the estimated parameter gradually declines and first becomes insignificantlly different from zero in
February 1994. The parameter remains insignificant for the rest of the period to end at a level of
0.19 in September 2010.

Figure 3. β̂2t for crude oil price 1980 to 2010. The estimates of β̂2t are
shown by a solid bold line and its confidence limits by dotted lines.

Figure 3 shows the results of the parameter β̂2t for the period 1980 to 2010. The estimate β̂2t has
an initial value of −0.29 and is significantly different from zero at 0.05 level. The magnitude of
the estimated parameter gradually increase and first becomes insignificantly different from zero
in March 1993. The parameter remains insignificant for the rest of the period to end at −0.02 in
September 2010. Crude oil price follow the random walk from February 1994. Prior to the year
1994, the finding is that crude oil prices did not follow the random walk process i.e. crude oil price
were mean reverting.

5. Conclusion
In this study, an attempt was made to determine whether crude oil price is mean reverting or

a random walk process. Two approaches namely the Augmented Dickey-Fuller (ADF) test and
the Garch model with time-varying properties are used. Before carrying out formal Augmented
Dickey-Fuller (ADF) tests, the autocorrelation function (ACF) correlogram of crude oil price and
log crude oil price are examined to investigate stationarity.
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8 İSTATİSTİK: Journal of the Turkish Statistical Association 6(1), pp. 1–9, c© 2013 İstatistik

The untransformed data series from 1980 to 2010 shows evidence of a random walk process
when using the ADF test, yet a shorter period (first segment) shows mean reversion for the period
January 1980 to January 1994 according to the same test. The test also shows that crude oil price
follows a random walk over the period February 1994 to 2010. Thus the results seem to depend
on the period under consideration and this is rather puzzling. These results of the random walk or
mean reversion also seem to depend on whether the data is log transformed or not. The behaviour
of a random walk is more pronounced in log crude oil price. These results show that the ADF test
approach has a limitation of depending on the period under consideration.
The Garch model with time-varying parameters approach shows the presence of mean reversion

in log crude oil prices over the period January 1980 to January 1994. It shows a random walk as of
February 1994. The conclusion of the ADF test seem to depend on the period under consideration.
The cut off period of January 1994 for the first segment is suggested by the results of the Garch
modelling approach. This approach does not depend on the period under consideration and can
be deemed to be better than the ADF test in that sense. The Garch modelling approach confirms
the ADF approach when the latter approach uses segmented data with log transformed data.
The results obtained in this paper are consistent with the results by Geman (2007) who concluded

that the crude oil price follow a random walk for the period January 1999 to October 2004, using
the ADF test. The result of the study also shows some similarity with Bessembinder et al. (1995),
who confirm the existence of mean reversion over the period 1982 to 1991. The authors obtained
inconclusive results over the period 2000 to 2005 and in this paper, a random walk prevails over
that period.
This paper uses more current monthly data on crude oil prices up to September 2010. The Garch

time-varying property approach used in the study produces results that are somewhat different to
the ADF test. The results are similar only when the data is segmented after observing information
from the Garch model. This study concludes the existence of mean reversion for crude oil prices
over the period 1980 to 1994 and a random walk as of February 1994. The results also confirm a
finding by Geman (2007) that the behaviour of a random walk is more pronounced when using log
crude oil price. The ADF test using untransformed data shows that the crude oil price is mean
reverting for the period January 1980 to February 1994 yet the log transformed data shows a
random walk over the same period.
The paper recommends further study in using time-varying parameters approach to investigate

mean reversion and random walk for asset prices of precious metals such as gold and platinum.
Statisticians and econometricians should at least use the Garch approach before using the ADF
tests to investigate whether prices are mean reverting or a random walk for a period under consider-
ation, and avoid conflicting results which depend on size of the sample (period) under consideration.
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[6] Emerson, R., Hall, S.G. & Zalaweska-Mitura, A. (1997) Evolving Market Efficiency with an application
to some Bulgarian shares. Economics of planning, 30(1): 75-90.

[7] Geman, H. (2007) Mean Reversion versus RandomWalk in Oil and Natural Gas Prices. United Kingdom:
University of London.

[8] Harvey, H., Ruiz, E & Sentona, E. (1992) Unobserved component time series models with ARCH
disturbances. Journal of Econometrics 52: 129-157.

[9] Jefferies, K. & Smith, G. (2005) The changing efficiency of African stock markets. South African Journal
of Economics, 73: 54-67.

[10] Lo, A.W. & Mackinlay, A.C. (1999) A Non-Random Walk down Wall Street. Princeton: Princeton
University Press.

[11] Moonis, S.A. & Shar, A. (2008) Teseting the time variation in beta in India. Journal of Emerging
Markets Finance, 2(2): 163-180.

[12] Pindyck, R.S. (1999) The long run evolution of energy prices. The Energy Journal 20: 1-27.

[13] Zalewska-Mitura, A. & Hall, S.G.] (1999) Examining the first stages of market performance: a test for
evolving market efficiency. Economics Letters, 64: 1-12.

[14] The mongabay website
http://www.mongabay.com/commodities/price-charts/price-of-uk-brent-oil.html [Accessed
22July 2012]

1 306010 010091

http://www.mongabay.com/commodities/price-charts/price-of-uk-brent-oil.html
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1. Introduction
Persistence in the sense of slowly decaying autocorrelations is a stylized fact with many economic

and financial time series, see Henry and Zaffaroni [12] for a survey. Such persistence is often called
long memory. It can be captured by models that are fractionally integrated of order d, I(d), with
0< d< 1, which extends the classical I(0)/I(1) paradigm.
Two popular procedures to analyze long memory are the log-periodogram regression (GPH after

Geweke and Porter-Hudak [4]), and the local Whittle estimator [LW], proposed by Künsch [18]
and investigated by Robinson [22]. Both estimators are asymptotically normally distributed and
consistent for d ∈ (−0.5,0.75), but the LW estimator is more efficient asymptotically. Still, LW
is inconsistent for d≥ 1 and lacks asymptotic normality for d > 3/4, see Velasco [30]. Therefore,
diverse methods have been proposed to improve its statistical properties. Well-known and easily
implemented extensions include data differencing and periodogram tapering, see for example Hur-
vich and Ray [17], Hurvich and Chen [15] and Velasco [30]. However, Shimotsu and Phillips [28]
argue that the first alternative requires prior knowledge of the degree of differencing, while the
second one leads to an increase in the variance of the estimator. They propose a computationally
more demanding variant of LW called Exact Local Whittle estimator [ELW]. It is consistent and
follows the same limiting distribution as the LW estimator, however, it does so for a much larger
parameter space. Alternatively, Abadir, Distaso and Giraitis [1] introduce a fully extended (or:
nonstationarity-extended) version of the LW estimator. A thorough discussion of these LW-type
estimators, and also of tapered LW estimators as well as wavelet-based competitors can be found
in Faÿ, Moulines, Roueff and Taqqu [3].
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In this paper, we focus on two variants of the LW procedure and compare the original LW
and ELW estimators in an extensive Monte Carlo study. Several papers have studied the selection
of the number of periodogram ordinates (bandwidth m) in relation to estimation bias and root
mean squared error [RMSE], see for instance Robinson and Henry [24], Henry [10], and Nielsen
and Frederiksen [20]. But it seems that size properties when testing for the true parameter value
building on approximate normality have hardly been reported (an exception being the limited
evidence in Hauser [9] and Hurvich and Chen [15, Table II] for just one bandwidth choice). For that
reason we provide on the one hand experimental evidence not only on RMSE, but in particular on
distortions of the nominal size (or coverage) as a function of the chosen bandwidth. Additionally,
we compare deterministic with data-driven bandwidth selection rules. The latter ones have been
proposed by Robinson [21], Delgado and Robinson [2] and Henry and Robinson [11]. On the other
hand, we compare an alternative approximation of the test statistic (R∗ from eq. (3.6)) with the
usual asymptotic version (R from (3.4)), motivated by earlier findings in Hurvich and Chen [15].
We arrive at three relevant conclusions for empirical work that are summarized at the end of the
paper.
The rest of the paper is organized as follows. Section 2 introduces the long memory model of

fractional integration and the (E)LW estimator. In Section 3, we discuss approximations to the
limiting normal distribution used for testing hypotheses about d, while simulation evidence is
contained in Section 4. The final section summarizes our main findings.

2. Model and estimation

2.1. Fractional integration
The most widely used model to capture long memory is a fractionally integrated process {yt, t∈

Z}, given by
(1−L)dyt = xt , −1<d< 0.5 , (2.1)

where (1−L)d with the usual lag operator L is given by binomial expansion,

(1−L)
d
=

∞∑

j=0

πj,dL
j , π0,d = 1, πj,d =

j− 1− d

j
πj−1,d , j ≥ 1 , (2.2)

and {xt} is a purely stochastic, stationary process with short memory. More precisely, we assume
that the spectral density of {xt} is bounded and bounded away from zero at frequency zero, such
that the process is I(0). In case of fractional integration one allows for non-integer values of d∈R.
Equation (2.1) defines a stationary process if and only if d < 0.5, see e.g. Granger and Joyeux [6]
and Hosking [13].
In the time domain, the persistence of a fractionally integrated process is reflected by the

behaviour of a hyperbolically decaying autocovariance sequence. For 0 < d < 0.5, the autocovari-
ances γh =E(ytyt+h) decay for a constant Cd depending on d so slowly,

γh ∼Cd h
2d−1, h→∞ , (2.3)

that they are not summable, which characterizes long memory in the time domain:

H∑

h=0

| γh | → ∞, H→∞ .

Often, it is assumed that {xt} is an autoregressive moving-average process [ARMA], which we do
not require here. For a fairly general sufficient condition on the short memory component {xt} that
guarantees (2.3), see Hassler and Kokoszka [7, Coro. 2.1].
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In the frequency domain, long memory translates into unboundedness of the spectral density at
frequency zero. Particularly, it holds for {yt} with spectral density fy(λ) that

fy(λ)∼ λ−2d fx(0), λ→ 0 , (2.4)

where fx(λ) stands for the spectral density of the short memory component {xt}. Hence, fy is
integrable for d< 0.5 notwithstanding the singularity at frequency zero.
Nonstationary fractionally integrated processes can be defined in terms of integer differences

(∆= 1−L) for 0.5≤ d < 1.5,
∆yt = zt ∼ I(d− 1) ,

where {zt, t∈Z} is I(d− 1) as defined in (2.1). Consequently,

yt = y0 +
t∑

j=1

zj , t= 1, . . . , T , (2.5)

is integrated of order d. Such processes have been labelled “type I” by Marinucci and Robinson
[19], see also Robinson [23] for a discussion. Alternatively, many people work under the assumption
of “type II” processes defined as

yt = µ+
t−1∑

j=0

ψj,d xt−j , t=1, . . . , T , (2.6)

where ψj,d are from the truncated expansion of ∆−d, i.e. ψj,d =
j−1+d

j
ψj−1,d, and a constant µ is

added to the process. The model from (2.6) can also be used for d < 0.5, although the process
becomes stationary only asymptotically.

2.2. (Exact) Local Whittle [LW] estimation
Whittle [31, 32] suggested for stationary processes an approximation of the likelihood function

in the frequency domain, which relies on the periodogram. Consider the discrete Fourier transform
[DFT] wy(·) of {yt} (t= 1 . . . T ),

wy(λj) =
1

√
2πT

T∑

t=1

yt exp{iλjt} , i2 =−1 ,

at the jth harmonic frequency λj =
2πj
T
. Then the periodogram simply is

Iy(λj) = |wy(λj)|
2
, j = 1, . . . ,M =

⌊
T − 1

2

⌋
, (2.7)

where ⌊·⌋ stands for the floor operator. The log likelihood approximation in the frequency domain
becomes

lM (d) =−

M∑

j=1

log fy(λj)−
M∑

j=1

Iy(λj)

fy(λj)
.

Now, let us assume model (2.5). The LW estimator maximizes the log likelihood locally over a
vicinity close to frequency 0, where the slope of fy varies with d alone, see (2.4). To that end
M is replaced by the bandwidth m. A crucial condition for the consistency of the estimator in
the presence of short memory in {xt} is that the number of harmonic frequencies m used in the
estimation must diverge more slowly than the sample size T :

1

m
+
m

T
→ 0 , T →∞ . (2.8)
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Replacing fy(λj)∼Gλ−2d
j where G= fx(0), the negative local log likelihood becomes

−lm(d) ≈
m∑

j=1

(
logG− 2d log (λj)+

Iy (λj)

Gλ−2d
j

)
=:Qm (G,d) .

Concentrating G out yields Ĝ= 1
m

∑m

j=1 λ
2d
j Iy(λj). Hence, the estimation of d requires minimizing

R(m,d) := log

{
1

m

m∑

j=1

λ2d
j Iy (λj)

}
−

2d

m

m∑

j=1

log (λj) , (2.9)

being the LW estimator thus defined as

d̂LW = argmin R(m,d) .

Obviously, d̂LW crucially hinges on m as well as on the slope of fx(λ) at the origin, which is
surpressed for notational convenience. Robinson [22] establishes limiting normality under (2.8) and
further assumptions,

√
m (d̂LW − d)⇒N

(
0,

1

4

)
, (2.10)

for d ∈ (−0.5,0.5) where “⇒” denotes convergence in distribution. Since the periodogram is shift
invariant, the LW estimator is not affected by a mean µ different from zero and does not require an
estimation of µ. Notice that the limiting variance is smaller than that of the famous semiparametric
competitor, the log-periodogram regression by Geweke and Porter-Hudak [4]. Moreover, LW has
been recommended since it is robust with respect to heteroskedasticity of a certain degree, see
Robinson and Henry [24] and Shao and Wu [25]. Finally, Velasco [30] extended the results by
Robinson [22] showing that the LW estimator is consistent for d ∈ (−0.5,1) and asymptotically
normal for d∈ (−0.5,0.75).
The issue of nonstationarity has been addressed more fully by Shimotsu and Phillips [28]. They

propose to correct the DFT by adding a complementing term ensuring a valid approximation that
holds for every value of d. This so-called exact LW procedure [ELW] implies replacing λ2d

j Iy(λj)
in (2.9) by I∆dy(λj), and it is valid if µ= 0 in (2.6). For means different from zero, Shimotsu [27]
suggests to demean {yt} with an appropriate estimator µ̂, and to compute the exact LW estimator
from the demeaned data. The objective function to be minimized becomes

RE(m,d) := log

{
1

m

m∑

j=1

I∆d(y−µ̂)(λj)

}
−

2d

m

m∑

j=1

log(λj) , (2.11)

where I∆d(y−µ̂)(λj) is the periodogram of {∆d(yt − µ̂)}. To determine the fractional differences, it
is assumed that {yt} is given by a type II process as in (2.6). It turns out that the first sample
observation y1 is a reliable mean estimator in the case of large values of d, while the usual arithmetic
mean y does a good job for small parameter values of d. Hence, Shimotsu [27] puts forward the
following weighted estimator:

µ̂(d) = v(d) y+(1− v(d)) y1 ,

v(d) =






1 , d≤ 0.5
1+cos(4πd)

2
, 0.5< d< 0.75

0 , d≥ 0.75
.

To get a feasible procedure, he considers two steps. First, one determines an estimator of d̂ inde-
pendent of µ in order to get an estimator of the constant: µ̂= µ̂(d̂). In a second step, the slope
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and Hessian of RE(m,d) are used to compute the feasible estimator (a MATLAB code is available
from the homepage of K. Shimotsu):

d̂2ELW = d̂−
R′

E(m, d̂)

R′′
E(m, d̂)

.

Shimotsu [27, Theo. 3] shows that the two-step ELW estimator d̂2ELW is consistent and has the
same limiting distribution as the LW and ELW estimators under −0.5< d< 2.

3. Approximate inference
One goal of semiparametric inference is hypothesis testing about the long memory parameter d.

Hypotheses of interest are d≤ 0 (short memory) vs. d > 0 (long memory), or d≥ 0.5 (nonstation-
arity) vs. d< 0.5 (stationarity). The tests are approximate in that they rely on limiting normality
(as m→∞) of the appropriately standardized estimators.

3.1. Bandwidth selection
Robinson [22] proves limiting normality for the LW estimator under

m= Tα, 0<α< 0.8. (3.1)

This rate is from Robinson [22, Assumption A4’] in the case {xt} is ARMA (for β = 2 in his
notation); see Shimotsu and Phillips [28] for a slightly stronger assumption in the case of ELW
estimation. In practice, the choice of the bandwidth m will be crucial for reliable inference. It
balances a trade-off between variance and bias, see Henry and Robinson [11]. Thus, if m is chosen
too large or too small, the outcome of the estimation may wrongly suggest a certain degree of
persistence. To avoid such pitfalls, many empirical researchers typically opt for choosing a grid of
bandwidth values and then plot the estimates against different values of m, see also Taqqu and
Teverovsky [29] for graphical bandwidth selection. Ideally, one observes three regimes: With small
values of m the estimates will display high variability, then the plot of the estimates should become
approximately flat, while with further growing values of m the estimates may start to fall or to rise
because of a bias due to a short memory component. In such an ideal situation one would choose
m from the middle regime. In practice, however, such an ideal situation will rarely be encountered
unless the sample size is very large.
As an alternative to graphical means, data-driven techniques for bandwidth choice have been

proposed. They rely on a minimization of the asymptotic mean squared error and have been
proposed by Delgado and Robinson [2], Henry and Robinson [11], Henry [10], Giraitis, Robinson
and Samarov [5] and Hurvich and Deo [16]. While the latter two contributions concentrate on
the log-periodogram regression estimator of d, Henry and Robinson [11] and Henry [10] derive an
algorithm to obtain an optimal bandwidth for the LW estimator.
The approximative optimal spectral bandwidth derived heuristically in Henry and Robinson [11]

must be iterated until convergence to an optimal bandwidth value is achieved. It is defined as

d̂(k) = argminR(m̂(k);d) ,

m̂(k+1) =

(
3T

4π

)4/5
∣∣∣∣∣θ+

d̂(k)

12

∣∣∣∣∣

−2/5

, (3.2)

with initial value m̂(0) = T 0.8. Strictly speaking, the optimal rate of T 0.8 in (3.2) violates the
condition in (3.1). In the case of the long memory representation defined in (2.4), if the first and
second derivatives of fx(λ) exist, the parameter θ from (3.2) is defined as θ = f ′′

x (0)/2fx(0), as
shown by Delgado and Robinson [2]. The authors propose a simple feasible approximation for the
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unknown parameter θ, which is motivated by a Taylor expansion and consists in regressing the
periodogram Iy(λj) on the regressors Zjℓ(d̂

(0)), ℓ= 0,1,2:

Iy(λj) =
2∑

ℓ=0

Zjℓ(d̂
(0)) ϕ̃ℓ+ ε̃j j = 1, . . . , m̂(0) ,

where Zjℓ(d) = |1− exp{iλj}|
−2d

λℓ
j/ℓ!. The estimates of fx(0) and f

′′
x (0) are ϕ̃0 and ϕ̃2, respectively,

so that the estimated parameter is given by

θ̂=
ϕ̃2

2ϕ̃0

. (3.3)

In principle, one could include the determination of θ̂ as part of the kth iteration step, but Delgado
and Robinson [2] advice against doing so, see also Henry [10].

3.2. Approximation of the asymptotic variance
Let now d̂ stand generically for the local Whittle estimator d̂LWor the two-step mean-corrected

version d̂2ELW of the ELW estimator by Shimotsu [27]. If we wish to test a null hypothesis about
d0, the asymptotic version of the test statistic becomes

R= 2
√
m (d̂− d0) , (3.4)

which is compared with critical values from the standard normal distribution because of (2.10). In
order to improve the size properties of the tests in finite samples, the bandwidth m in (3.4) can be
replaced with an approximation m∗ where

m∗ =
m∑

j=1

ν2j with νj = log j−
1

m

m∑

j=1

log j , (3.5)

because
m∗

m
=1+O

(
log2m

m

)
→ 1 as m→∞ ,

see Robinson [22, p.1645] or Hurvich and Beltrao [14, Lemma 1]. The rationale behind m∗ stems
from the Hessian of R(m,d) from (2.9) evaluated at maximum likelihood,

∂2R(m, d̂)

∂d2
=4

m∗

m
+ op(1) ,

see Robinson [22, (4.10)] or Hurvich and Chen [15, p.163], and Shimotsu and Phillips [28, p.1916]
for ELW. This motivates the usual maximum-likelihood approximation building on the Fisher
information: √

m (d̂− d0) ∼ N
(
0,

m

4m∗

)
.

The approximate test statistic R∗ is therefore defined as

R∗ = 2
√
m∗ (d̂− d0) , (3.6)

to be compared with standard normal percentiles.
Normalizing with m∗ instead of m comes in naturally for the log-periodogram regression, too,

due to studentizing the estimator with the regressor being log
(
4 sin2(λj/2)

)
∼ 2 logλj. In fact, this

corresponds to the original proposal by Geweke and Porter-Hudak [4], which was found experimen-
tally to outperform differing normalizations by Hassler, Marmol and Velasco [8, eqn. (7)]. For LW
estimation, an asymptotically equivalent approximation of m building on log (2 sin(λj/2)) instead
of log j in (3.5) was advocated by Hurvich and Chen [15], while our asymptotically equivalent
choice of m∗ in (3.5) was used by Shimotsu [26].
In the next section we report experimental size properties of R and R∗ under the null hypothesis

that d0 is the true value.
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4. Experimental evidence

To investigate the finite-sample behaviour of the variants of the LW estimator, we now report

the empirical size and RMSE from a simulation study for different bandwidth selection rules. These

are deterministic as well as data-driven according to the iterative procedure described in (3.2).

The data generating process [DGP] is an ARFI(1, d) model, where the short memory component

{xt} is a stable AR(1) sequence,

xt = axt−1 +ut , (4.1)

with standard normal innovations ut ∼ iiN (0,1). We consider the following cases:

1. ARFI(0, d), d ∈ {0,0.45,0.7} and

2. ARFI(1,0) with a= 0.5.

ARFI(0, d) denotes the case of fractionally integrated noise where a= 0. The scheme to generate

fractional integration is throughout of type II, see (2.6), where we set µ= 0 without loss of general-

ization. For each Monte Carlo DGP, 1000 replications with T ∈ {256,512,1024} observations were

performed. All computations were performed with MATLAB. To estimate d, we minimize over the

interval [−1; 3] using the routine “fminbnd”.

From our experiments we present as empirical size 100 α̂, where α̂ is the relative frequency

of rejection under the null at nominal level α0 ∈ {0.01,0.05,0.10}. Since α̂ converges to α0, the

approximate 95% confidence interval is given by

[
α̂± 1.96

√
α0(1−α0)

1000

]
or

[
100 α̂± 1.96

√
10α0(1−α0)

]
. (4.2)

The following table presents lengths of such intervals that allow to judge whether the percentages

of rejections reported in the next two subsections are conformable with the corresponding nominal

levels or not.
α0 1% 5% 10%

CI from (4.2) [100 α̂± 0.617] [100 α̂± 1.351] [100 α̂± 1.859]
In what follows, we highlight in bold face those experimental levels that are not significantly

different from the nominal ones at the 95% level according to (4.2).
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Table 1. White noise: ARFI(0,0)

T =256 T = 512 T = 1024

Test statistic n.s. T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75

1% 6.7 4.5 3.4 3.9 3.2 2.3 3.8 2.4 1.5

RLW 5% 16.9 11.8 8.8 12.3 10.0 7.5 10.7 8.8 6.0

10% 24.3 17.2 16.9 19.1 15.9 13.3 15.6 15.1 12.2

1% 2.4 2.1 1.5 1.6 1.7 1.1 2.2 1.2 1.1

R
∗
LW 5% 7.8 6.7 6.1 5.9 5.8 6.1 6.6 6.1 4.6

10% 14.4 12.1 11.3 11.5 11.3 10.7 11.6 11.8 10.0

RMSE 0.145 0.103 0.072 0.115 0.079 0.055 0.089 0.062 0.038

1% 5.9 4.6 3.6 4.5 3.4 2.5 3.8 2.6 2.5

R2ELW 5% 15.6 11.9 9.1 12.6 10.7 7.7 10.6 8.6 9.3

10% 24.5 18.7 18.5 19.5 16.0 14.5 16.7 15.9 14.4

1% 1.8 2.3 1.9 1.9 1.9 1.4 2.3 1.6 1.7

R
∗
2ELW 5% 6.6 6.9 6.6 6.6 6.2 6.4 6.8 6.5 7.2

10% 14.1 12.5 11.9 11.5 11.7 11.8 12.2 11.8 12.6

RMSE 0.148 0.108 0.076 0.118 0.085 0.058 0.092 0.067 0.042

Root mean squared errors and frequencies of rejections at nominal significance level n.s.

when testing for the true value d0 =0 based on 1000 replications. The test statistics R and

R
∗ are from (3.4) and (3.6), respectively. The bandwidths are m = T 0.55, T 0.65, T 0.75. In

bold face experimental levels not significantly different from the nominal ones at 95% level

according to (4.2).

4.1. Deterministic choice of m

As deterministic rules for bandwidth selection we include m= T 0.55, T 0.65 and T 0.75. Tables 1-4

report the rejection frequencies of the test statistics (3.4) and (3.6) for the LW estimator and the

two-step mean-corrected ELW estimator, respectively. All empirical sizes are computed for the

bandwidth values m and for the sample sizes T mentioned above.
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Table 2. Stationary fractionally integrated noise: ARFI(0,0.45)

T =256 T = 512 T = 1024

Test statistic n.s. T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75

1% 5.3 4.1 3.1 4.5 2.6 1.2 3.1 1.7 2.4

RLW 5% 14.2 13.4 10.3 12.2 8.6 8.4 10.5 7.8 7.2

10% 23.2 20.1 17.1 20.3 15.2 14.6 17.3 13.6 12.1

1% 2.0 1.4 1.1 1.6 1.1 0.7 1.7 1.0 1.7

R
∗
LW 5% 5.9 7.8 6.4 6.5 5.5 5.8 5.8 5.2 5.2

10% 12.0 13.7 12.6 11.7 11.0 11.9 11.7 10.9 10.7

RMSE 0.149 0.103 0.073 0.115 0.083 0.055 0.090 0.060 0.040

1% 5.7 4.2 3.4 4.6 2.6 1.7 3.5 2.2 2.5

R2ELW 5% 14.5 12.8 10.5 12.6 8.7 8.7 11.5 7.8 8.4

10% 22.6 19.3 19.7 20.4 16.5 14.5 18.5 14.2 14.7

1% 2.8 2.1 1.9 1.7 1.5 1.8 1.8 1.6 1.9

R
∗
2ELW 5% 8.1 7.5 6.8 6.3 5.8 5.9 5.9 5.8 7.3

10% 13.9 13.7 13.9 11.9 11.2 11.9 11.6 11.2 12.9

RMSE 0.148 0.110 0.078 0.117 0.082 0.056 0.092 0.062 0.045

Results when testing for the true value d0 = 0.45; for further comments see Table 1.
Generally, it can be observed that the size distortion of the test tends to decrease as T and

m increase. In the case of white noise (Table 1), R is noticeably oversized, and the performance

of all estimators is very similar. The rejection probabilities seem indeed to be markedly sensitive

to the bandwidth choice, though this problem is reduced for large sample sizes. The variance

approximation used in R∗ from (3.6) clearly reduces the size distortion in all cases and for both

estimators. When d = 0.45, the size distortion is at least as large as in the white noise case.

The performance of the LW estimator in terms of size and RMSE is a bit better than that of

2ELW in almost all cases, also when the sample size is small, but the overall performance of the

two approaches is quite similar. Again, the variance approximation used in (3.6) reduces the size

distortion of all tests remarkably. In the case d takes on the nonstationary value 0.7, the two-stage

ELW estimator outperforms the LW estimator, above all in terms of size distortion, see Table 3.
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Table 3. Nonstationary fractionally integrated noise: ARFI(0,0.7)

T =256 T = 512 T = 1024

Test statistic n.s. T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75

1% 5.8 3.7 3.4 4.0 3.4 4.2 3.6 2.9 4.4

RLW 5% 15.1 11.7 10.1 12.3 11.8 11.6 13.1 10.9 12.0

10% 22.5 19.5 16.0 19.1 18.2 17.8 18.4 17.0 19.8

1% 1.6 1.3 1.5 1.5 1.9 2.6 1.9 1.8 3.6

RLW∗ 5% 7.2 6.6 7.0 5.8 7.3 8.5 7.4 7.3 10.6

10% 13.1 12.4 12.5 11.8 13.4 15.0 13.8 13.6 17.1

RMSE 0.148 0.103 0.075 0.114 0.083 0.058 0.092 0.065 0.047

1% 4.4 3.1 2.1 3.8 2.4 3.1 2.7 2.3 2.0

R2ELW 5% 12.5 9.9 9.6 11.8 10.8 9.2 9.7 7.3 8.0

10% 21.2 17.2 14.6 18.9 17.5 15.3 17.2 13.8 14.4

1% 1.7 1.6 1.4 1.3 1.5 1.6 1.1 1.0 1.5

R
∗
2ELW 5% 5.6 5.0 5.2 5.8 7.1 7.5 5.6 5.0 5.7

10% 11.3 11.1 11.7 10.9 11.7 12.5 11.4 9.6 11.9

RMSE 0.144 0.102 0.072 0.112 0.081 0.056 0.088 0.058 0.042

Results when testing for the true value d0 = 0.7; for further comments see Table 1.
When short-run dynamics are added to the model, the selection of an adequate bandwidth

becomes even more decisive. Table 4 shows the simulation results for an ARFI(1,0) process with a

moderate autoregressive coefficient a= 0.5. The influence of the short-term component dominates

the behaviour of all estimators, and the contamination of the periodogram leads to a large bias in

the estimation of d. The size distortion caused by the autoregressive term increases excessively asm

gets large. If we allowed for a moving-average component instead of the AR(1) dynamics, similarly

detrimental effects are obtained. The theoretical charm of semiparametric estimators consists in

their (asymptotic) robustness against the presence of short memory. The simulations show, however,

that the finite sample performance may be far from the asymptotic promise. We conclude that even

for samples as large as T = 1000 the bandwidth must be chosen very conservatively (m< T 0.65)

to get somewhere close to the nominal size. Once more, the variance approximation used in (3.6)

clearly outperforms the test from (3.4).
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Table 4. AR(1)

T =256 T = 512 T = 1024

Test statistic n.s. T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75 T 0.55 T 0.65 T 0.75

1% 8.1 23.1 91.8 4.3 16.6 94.6 3.6 11.2 96.9

RLW 5% 18.5 41.8 97.3 13.1 31.2 98.4 13.0 24.3 99.2

10% 25.7 52.3 97.9 20.1 43.0 99.4 19.5 34.7 99.5

1% 3.1 13.4 88.2 1.6 9.8 92.0 1.9 7.2 95.7

R
∗
LW 5% 9.6 30.6 95.6 6.1 24.2 97.9 7.2 19.4 99.2

10% 15.9 42.2 97.5 12.5 35.2 99.2 14.6 30.0 99.5

RMSE 0.158 0.172 0.276 0.120 0.120 0.220 0.091 0.087 0.174

1% 7.1 28.6 95.6 4.8 20.5 98.5 3.4 10.9 98.4

R2ELW 5% 17.8 45.1 98.6 12.6 38.5 99.6 10.7 25.9 99.6

10% 26.2 55.0 99.4 19.5 47.7 99.8 19.3 35.3 99.7

1% 2.6 16.2 94.0 1.6 13.0 96.4 1.7 7.6 97.1

R
∗
2ELW 5% 8.4 35.5 97.6 6.7 31.0 99.6 7.1 20.7 99.6

10% 15.5 46.1 99.3 12.3 42.6 99.8 13.0 31.2 99.7

RMSE 0.159 0.183 0.316 0.116 0.130 0.244 0.095 0.087 0.192

The model is ARFI(1,0) with a= 0.5; for further comments see Table 1.

4.2. Data-driven choice of m

In this subsection we study the iterative procedure defined in (3.2), concentrating on the LW

estimator in order to save space. In the white noise case we observe in Table 5 similar empirical

sizes as under deterministic bandwidth selection in Table 1. For the ARFI(0,d) cases (Tables 5

and 6) the size distortion is larger than under the deterministic rules reported in Tables 2 and

3. Finally, in the ARFI(1,0) case (Table 6) the data-driven selection is superior only to large

bandwidths chosen deterministically (T 0.65 or T 0.75). This reinforces the above warning to select m

rather conservatively in practice to circumvent bias and size distortion due to short-memory. All

in all, data-driven bandwidth determination has no benevolent effect on the size distortion. What

is more, there were many cases where no convergence according to (3.2) was achieved (see Tables

5 and 6).
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Table 5. LW and data-driven bandwidth selection

White noise ARFI(0,0.45)

Test statistic n.s. T = 256 T =512 T = 1024 T = 256 T =512 T = 1024

1% 4.9 3.5 2.7 8.2 6.5 4.1

RLW 5% 12.3 8.5 7.1 17.6 15.7 12.3

10% 19.9 15.2 12.5 25.0 23.2 18.2

1% 2.5 2.2 2.1 3.3 2.3 2.0

R
∗
LW 5% 7.5 5.5 5.4 9.7 9.8 8.3

10% 13.7 11.3 9.8 15.9 15.9 14.3

Non convergence 70 50 26 29 8 8

Based on 1000 replications of the ARFI(0,0) and ARFI(0,0.45) models. The number of

non convergence cases is also reported. For further comments see Table 1.

Table 6. LW and data-driven bandwidth selection

ARFI(0,0.7) ARFI(1,0)

Test statistic n.s. T = 256 T =512 T = 1024 T = 256 T =512 T = 1024

1% 14.2 9.8 9.7 14.2 8.3 5.7

RLW 5% 23.6 19.0 18.4 24.0 16.4 15.0

10% 31.2 26.6 26.1 31.8 23.4 21.6

1% 8.1 4.1 3.8 7.1 4.0 3.0

R
∗
LW 5% 15.4 10.4 10.6 15.1 10.6 10.5

10% 21.5 18.9 18.5 21.6 18.3 16.1

Non convergence 48 17 8 15 7 8

Based on 1000 replications of ARFI(0,0.7), and ARFI(1,0) with a = 0.5; for further

comments see Table 5.



Hassler and Olivares: Semiparametric Inference and Bandwidth Choice under Long Memory:experimental evidence
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5. Concluding remarks
The LW estimator is asymptotically more efficient than other popular semiparametric long mem-

ory estimators. Moreover, the procedure has been proven to be robust to heteroskedasticity of a
certain degree, see for instance Robinson and Henry [24]. At the same time it has at least three
limitations. First, consistency and limiting normality only hold for a restricted parameter range
excluding relevant cases of nonstationarity (see Robinson [22] and Velasco [30]). To overcome this
shortcoming, Shimotsu and Phillips [28] proposed a computationally more involved variant called
the exact LW estimator. It has the same limiting properties as LW but covers also the region of
nonstationarity. In most practical situations, a mean-corrected version of the exact LW has to be
worked with, see Shimotsu [27]. Second, the normal distribution of the normalized estimator holds
of course only asymptotically. In finite samples it may be hard to control the probability of a type
I error. It is a priori not clear how the estimator should be normalized to get a test statistic with
satisfactory size properties in finite samples. Third, the semiparametric nature of LW hinges on
an appropriate choice of a bandwidth m that balances the trade-off between bias and variance.
The optimal rate of divergence for m was determined such as to minimize the asymptotic mean
squared error [mse]. The resulting rate, however, violates the rate given in (3.1) ensuring limiting
normality. Hence, the question arises how the normalized estimator will behave as a test statistic
when the bandwidth is chosen according to a data-driven criterion that is mse optimal.
All three issues just raised with the (exact) LW estimator are addressed in our paper by means

of a Monte Carlo study. Our contributions can be summarized as follows. First, the 2ELW by
Shimotsu [27] is superior to the LW estimator when the process is indeed nonstationary. In the
region of stationarity, however, there are many situations where LW dominates the exact variant
in terms of size distortion and mse. Not knowing in practice, whether the true d is less than 0.5 or
not, both ELW and LW can equally be advised. Second, with respect to the normal approximation
we compared the usual asymptotic version of the test statistic R from (3.4) with the finite sample
modification R∗ from (3.6). Our experimental results on size distortions are very clear-cut: the
finite sample approximation R∗ constitutes a uniform improvement in that it always outperforms
the classical variant. This holds for LW just as well as for 2ELW. Finally, we ran a horserace
between deterministic bandwidth selection and data-driven selection rules relying on the mse opti-
mal bandwidth rate. It turns out, generally speaking, that a data-driven bandwidth choice affects
subsequent inference even in large samples. Resulting size distortions are large compared to the
case of careful, moderate choices of deterministic values of m. Our experiments show that even
a small bandwidth choice of m = T 0.55 may result in a too liberal size performance under short
memory for samples with length between T = 250 and T = 1000.

References
[1] Abadir, K. M., Distaso, W. and Giraitis, L. (2007). Nonstationarity-extended local whittle esti-

mation. Journal of Econometrics, 141, 1353–1384.

[2] Delgado, M. and Robinson, P. M. (1996). Optimal spectral bandwidth for long memory. Statistica
Sinica, 6, 97–112.
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1. Introduction
In this competitive world, the key to survival of service oriented organizations rest in positive

customer experience at the point of service delivery. It is argued that unless the customer is satisfied
with the quality of service offered, customer loyalty may suffer. It is in this context that waiting
for service attains importance, as queues are unavoidable. That being so, customers get impatient
on having to experience a queue. This impatience finds reflection in two ways viz: balking and
reneging. Even though these concepts have been dealt with in literature, closed form expressions
are not always available. This paper is an attempt to fill this gap in literature.
By balking, we mean the phenomenon of customers arriving for service into a non-empty queue

and leaving without joining the queue. There is no balking from an empty queue. Haight (1957)
has provided a rationale, which might influence a person to balk. It relates to the perception of
the importance of being served which induces an opinion somewhere in between urgency, so that
a queue of certain length will not be joined, to indifference where a non-zero queue is also joined.
A customer will be said to have reneged if after joining the system it gets impatient and leaves

the system without receiving service. On joining the system, it has a patience time such that in
case service is unavailable within this patience time, the customer reneges.
Reneging can be of two types-viz. reneging till beginning of service (henceforth referred to as

R BOS) and reneging till end of service (henceforth referred to as R EOS). A customer can renege
only as long as it is in the queue and we call this as reneging of type R BOS. It cannot renege once
it begins receiving service. A common example is the barbershop. A customer can renege while he
is waiting in queue. However once service gets started i.e. hair cut begins, the customer cannot
leave till hair cutting is over. On the other hand, if customers can renege not only while waiting
in queue but also while receiving service, we call such behavior as reneging of type R EOS. ”Ward
and Bambos (2003) detailed a case of web system. In such a system, request for specific pages
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arrive at random points in time and are served in the order received. Impatient users may cancel
their request at any time and that may occur either during service or before service has begun.
Overall such dynamics arise in any queuing situation with time sensitive jobs, where reneging may
occur both in queues and at the server”.
In the analysis of reneging phenomena, one approach is to assume that each customer has a

Markovian patience time, the distribution of which is position independent. However, it is our
common day observation that there are systems where the customer is aware of its position in the
system. For example customers queuing at the O.P.D. (out patient department) clinic of a hospital
would know of their position in the queue. This invariably causes waiting customers to have higher
rates of reneging in case their position in the queue is towards the end. It is not unreasonable
then to expect that such customers who are positioned at a distance from the service facility have
reneging rates, which are higher than reneging rates of customers who are near the service facility.
In other words, we assume that customers are ”position aware” and in this paper we model the
reneging phenomenon in such a manner that the Markovian reneging rate is a function of the
position of the customer in the system. Customers at higher states will be assumed to have higher
reneging rates.
The subsequent sections of this paper are structured as follows. Section 2 contains a brief review

of the literature. Section 3 and section 4 contains the derivation of steady state probabilities
and performance measures respectively. We perform sensitivity analysis in section 5. A numerical
example is discussed in section 6. Concluding statements are presented in section 7. The appendix
contains some derivation.

2. Literature Survey
Barrer (1957a) carried out one of the early work on reneging where he considered deterministic

reneging with single server Markovian arrival and service rates. Customers were selected randomly
for service. In his subsequent work, Barrer (1957b) also considered deterministic reneging (of both
R BOS and R EOS type) in a multi server scenario with FCFS discipline. The general method of
solution was extended to two related queuing problems. Another early work was by Haight (1959).
Ancher and Gafarian (1963) carried out an early work on Markovian reneging with Markovian
arrival and service pattern. Kok and Tijms (1985) considered a single server queuing system where
a customer becomes a lost customer when its service has not begun within a fixed time. Haghighi et
al. (1986) considered a Markovian multiserver queuing model with balking as well as reneging. Each
customer had a balking probability which was independent of the state of the system. Reneging
discipline considered by them was R BOS. Liu et al. (1987) considered an infinite server Markovian
queuing system with reneging of type R BOS. Customers had a choice of individual service or
batch service, batch service being preferred by the customer. Brandt and Brandt (1999) considered
a S-server system with two FCFS queues, where the arrival rates at the queues and the service
may depend on number of customers ’n’ being in service or in the first queue. Customers in the
first queue were assumed impatient customers with deterministic reneging. Boots and Tijms (1999)
considered an M/M/C queue in which a customer leaves the system when its service has not
begun within a fixed interval after its arrival. They have given the probabilistic proof of ’loss
probability’, which was expressed in a simple formula involving the waiting time probabilities
in the standard M/M/C queue. Ke and Wang (1999) considered the machine repair problem in
which failed machines balk with probability (1− b) and renege according to a negative exponential
distribution. Another work using the concepts of balking and reneging in machine interference
queue has been carried out by Al-Seedy and Al-Ibraheem (2001). Choi et al. (2001) introduced a
simple approach for the analysis of theM/M/C queue with a single class of customers and constant
patience time by finding simple Markov process. Applying this approach, they analyzed the M/M/1
queue with two classes of customer in which class 1 customer have impatience of constant duration
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and class 2 customers have no impatience and lower priority than class 1 customers. Performance
measures of both M/M/C and M/M/1 queues were discussed. Zhang et al. (2005) considered an
M/M/1/N framework with Markovian reneging where they derived the steady state probabilities
and formulated a cost model. Some performance measures were also discussed. Choudhury (2008)
provided a detailed and lucid derivation of the distribution of virtual waiting time in a single server
Markovian queuing system under R-BOS.
El- Paoumy (2008a) derived the analytical solution of Mx/M/2/N queue for batch arrival system

with Markovian reneging. Another paper on Markovian reneging was by Altman and Yechiali
(2008). They derived the probability generating function of number of customers present in the
system and some performance measures were discussed. Xiong and Altiok (2009) have provided
approximations for some performance measures of a multi server queue with Poisson arrivals,
general service time distribution and deterministic reneging.
Yechiali (2007) considered a multi server Markovian queue suffering occasional disaster break-

down. During such breakdown, all customers in the system are cleared. New arrivals during the
breakdown period have an exponentially distributed patience time, such that if the service is not
reactivated during this patience time, the customer reneges.
Other attempts at modeling reneging phenomenon include those by Baccelli et al. (1984), Martin

and Artalejo (1995), Shawky (1997), Choi et al. (2004), Singh et al. (2007), El- Sherbiny (2008)
and El-Paoumy and Ismail (2009) etc.
An early work on balking was carried out by Haight (1957). Jouini et al. (2008) modeled a

call center as an M/M/s+M queue with endogenized customer reactions to announcements. They
assumed that customers react by balking upon hearing the delay announcement and may subse-
quently renege if their realized waiting time exceeds the delay that has originally announced to
them. They calculated the waiting time distribution i.e. announcement coverage and subsequent
performance in terms of balking and reneging. Al-Seedy et al. (2009) presented an analysis for
the M/M/c queue with balking and reneging. They assumed that arriving customers balked with
a fixed probability and reneged according to a negative exponential distribution. The generating
function technique was used to obtain the transient solution of system those results in a simple
differential equation. Yue et al. (2009) considered an M/M/2 queuing system with balking and two
heterogeneous servers, server 1 and server 2. They assumed that customers arrived according to a
Poisson process and form a single waiting line where two parallel servers provided heterogeneous
exponential service on a first-come first-served basis. It is also assumed that server 1 is perfectly
reliable and server 2 is subject to breakdowns. They obtained the stationary condition where the
system reaches a steady state and derived the steady state probabilities in a matrix form by using
matrix-geometric solution method. They produced explicit expressions of some performance mea-
sures such as the mean system size, the average balking rate and the probabilities that server 2 is
in various states. Choudhury and Medhi (2011) analyzed a multiserver Markovian queuing system
under the assumption that customers may balk as well as renege. They assumed that each arriving
customer has probability (1− p) of balking from a system with no idle servers and for reneging
they assumed that each customer joining the system have a random patience time. Explicit closed
form expressions were presented. A numerical example with design aspects was also discussed to
demonstrate results derived.
Some other papers which have considered both balking and reneging are the work by Shawky and

El-Paoumy (2000), El- Paoumy (2008a and 2008b), El- Sherbiny (2008), Shawky and El-Paoumy
(2008), Pazgal et al. (2008).

3. The Model and System State Probabilities
The model we deal with in this paper is the traditional M/M/1/k model with the restriction

that customers may balk from a non-empty queue as well as may renege after they join the queue.
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We shall assume that the inter arrival and service rates are λ and µ respectively. Analysis of
M/M/1/k queuing model assumes significance from the fact that in the classical M/M/1 model, ”it
is assumed that the system can accommodate any number of units. In practice, this may seldom
be the case. We have thus to consider the situation such that the system has limited waiting space
and can hold a maximum number of k units (including the one being served)” {Medhi (1994)}.
Our formulation differs from that of Medhi (1994) in that his model did not consider balking and
reneging. As stated earlier we impose the additional restrictions of state dependent balking and
position dependent reneging.
For balking it will be assumed that if the customer on arrival observes the system to be in

state ‘i’, the probability that he will balk is ‘i/k’, i= 1,2, . . . , k. With this set up, the finite buffer
restriction can also be seen as the state from which customer balks with probability 1(=k/k). There
is no balking from an empty queue.
For reneging, we shall assume that customers joining the system are of Markovian reneging type.

We shall assume that on joining the system, the customer is aware of its position in the same.
Consequently, the reneging rate is taken as a function of the customer’s position in the system. In
particular, a customer who is at state ‘n’ will be assumed to have random patience time following
exp (νn). Under R BOS, we shall assume that

vn =

{
0 , for n= 0,1.

v+ cn−1 , for n= 2,3, . . . , k

and under R EOS,

vn =

{
0 for n= 0.

v+ cn−1 for n= 1,2, . . . , k

where c is a constant (c≥0 and c 6=1).
Our aim behind this formulation is to ensure that customer’s at higher positions have monotonic

reneging rates. This requires that as a customer progresses in the system from position n to (n-1),
the reneging distribution shift from exp(vn) to exp(vn−1). In view of the memory less property,
this shifting of reneging distribution is mathematically tractable as we shall demonstrate in the
subsequent sections.
Our work stands out on a number of counts. First, one can observe from section 2 that existing

reneging literature does not analyze the case where the reneging behavior is position dependent.
All such Markovian reneging rules assume that reneging rate is constant irrespective of the position
of the customer. To the best of our knowledge, formulation of position dependent reneging rule
has not been attempted in literature. However, as mentioned earlier, there are many systems
where customers are position aware and hence have variable reneging rates. This formulation is
an important focus of this paper. Second, even though one can observe reneging and balking in
our day-to-day life, very little work has analyzed these features together. This has been attempted
here. Third, an important focus of this paper is the derivation of explicit closed form expressions
of performance measures which can be used ‘off the shelf’ by practitioners. Reneging and balking
literature seldom provide explicit closed form expressions; much less when reneging and balking
are both involved as in the case of this paper.
The steady state probabilities are derived by the Markov process method. We first analyze the

case where customers renege only from the queue. Under R BOS, letpn denote the probability that
there are ‘n’ customers in the system. The steady state probabilities under R BOS are given below,

λp0 = µp1 (3.1)

λ{1− (n− 1)/k}pn−1 + {µ+nv+ c(cn− 1)/(c− 1)}pn+1 = λ{1−n/k}pn+
{µ+(n− 1)v+ c(cn− 1)/(c− 1)}pn−1 ; n=1,2, . . . , k− 1

(3.2)
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λ{1− (k− 1)/k}pk−1 =
{
µ+(k− 1)v+ c(ck−1 − 1)/(c− 1)

}
pk (3.3)

Solving recursively, we get (under R BOS)

pn =

[{
λn

k∏

r=1

(1− r− 1/k

}
/

{
n∏

r=1

(
µ+ r− 1v+ ccr−1− 1/c− 1

)
}]

p0 ; n=1,2, . . . , k (3.4)

where p0 is obtained from the normalizing condition
k∑

n=0

pn = 1 and is given as

p0 =

[
1+

k∑

n=1

{
λn

k∏

r=1

(1− r− 1/k

}
/

{
n∏

r=1

(
µ+ r− 1v+ ccr−1− 1/c− 1

)
}]−1

(3.5)

The steady state probabilities satisfy the recurrence relation, under R BOS

pn =
[
{λ(1−n− 1/k)}

/
{µ+n− 1 ν+ c(cn−1− 1)

/
(c− 1)}

]
pn−1;n= 1,2, . . . , k

Under R EOS where customers may renege from queue as well as while being served, let qn
denote the probability that there are n customers in the system. Applying the Markov theory, we

obtain the following set of steady state equations.

λq0 = (µ+ v)q1 (3.6)

λ{1− (n− 1)/k}qn−1 + {µ+(n+1)v+ c(cn− 1)/(c− 1)}qn+1 = λ{1−n/k}qn
+
{
µ+nv+ c(cn−1− 1)/(c− 1)

}
qn ; n= 1,2, . . . , k− 1

(3.7)

λ{1− (k− 1)/k}qk−1 =
{
µ+ kv+ c(ck−1 − 1)/(c− 1)

}
qk (3.8)

Solving recursively, we get (under R EOS)

qn =

[{
λn

n∏

r=1

(1− r− 1/k

}
/

{
n∏

r=1

(
µ+ rv+ ccr−1− 1/c− 1

)
}]

q0 ; n= 1,2, . . . , k (3.9)

where q0 is obtained from the normalizing condition
k∑

n=0

qn = 1 and is given as

q0 =

[
1+

k∑

n=1

{
λn

k∏

r=1

(1− r− 1/k

}
/

{
n∏

r=1

(
µ+ rv+ ccr−1− 1/c− 1

)
}]−1

(3.10)

The steady state probabilities satisfy the recurrence relation, under R EOS

qn =
[{
λ(1−n− 1/k)

}
/
{
µ+nv+ c(cn−1− 1)/(c− 1)

}]
qn−1 ; n= 1,2, . . . , k
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4. Performance Measures
The main objective of any queuing study is to assess some well-defined parameters through which

the nature of the quality of service can be studied. These parameters are known as performance
measures. Performance measures are important as issues or problems caused by queuing situations
are often related to customer’s dissatisfaction with service or may be the root cause of economic
losses in a business. Analysis of the relevant performance measures of queuing models allows the
cause of queuing issues to be identified and the impact of proposed changes to be assessed.
An important measure is the mean number of customers in the system, which is traditionally

denoted by ’L’. We have presented the derivation of this important performance measure separately
for the two reneging disciplines in the appendix. These are denoted by LR BOS and LR EOS.
Let P (s) be the p.g.f of the steady state probability under R BOS rule. Then we note that

LR BOS =
k∑

n=0

npn

= P ′(1)

=
d

ds
P (s) |s=1

(See the appendix for more derivations)
From (A.8) and (B.2), the mean system sizes under the two reneging rules are

LR BOS = k[λ− (µ− ν)(1− p0)− p0 + {c− (p0/p0(cλ,µ, ν, k))/(c− 1)}]/(λ+ kν) (4.1)

LR EOS = k[λ−µ(1− q0)− q0 + {c− (q0/q0(cλ,µ, ν, k))/(c− 1)}]/(λ+ kν) (4.2)

The mean queue size formulas for the two cases can now be obtained and are given by

Lq(R BOS) =
k∑

n=2

(n− 1)pn

=LR BOS − (1− p0)
= k[λ− (µ− ν)(1− p0)− p0 + {c− (p0/p0(cλ,µ, ν, k))/(c− 1)}]/(λ+ kν)− (1− p0)

where p0 and p0(cλ,µ, ν, k) are defined in (3.5) and (A.4) respectively.
Similarly,

Lq(R EOS) =
k∑

n=2

(n− 1)qn

=LR EOS − (1− q0)
= k[λ−µ(1− q0)− q0 + {c− (q0/q0(cλ,µ, ν, k))/(c− 1)}]/(λ+ kν)− (1− q0)

where q0 and q0(cλ,µ, ν, k) are defined in (3.10) and (B.3) respectively.
Customers arrive into the system at the rate λ. However all the customers who arrive do not

join the system because of balking and due to finite buffer restriction. The effective arrival rate
into the system is thus different from the overall arrival rate and is given by

λe
(R BOS) = λ

k∑
n=0

(1−n/k)pn

= λ[1−LR BOS/k]
= λ[kν+(µ− ν)(1− p0)+ p0 −{c− (p0/p0(cλ,µ, ν, k))/(c− 1)}]/(λ+ kν)

(4.3)

Similarly in case of R EOS
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λe
R EOS = λ[kν+µ(1− q0)+ q0 −{c− (q0/q0(cλ,µ, ν, k))/(c− 1)}]/(λ+ kν) (4.4)

We have assumed that each customer has a random patience time following exp(v). Clearly then,
the reneging rate of the system would depend on the state of the system as well as the reneging
rule. The average reneging rate (avg rr) under two reneging rules are given by

Avgrr(R BOS) =
k∑

n=2

{(n− 1)ν+ c(cn−1− 1)/(c− 1)}qn

= ν{P ′(1)− p1}− ν(1− p0 − p1)+ {1

/
(c− 1)}

k∑
n=2

cnpn −{c/(c− 1)}
k∑

n=2

pn

= νLR BOS − ν(1− p0)− c/(c− 1)+p0/{p0(cλ,µ, ν, k)(c− 1)}+ p0

(4.5)

Avgrr(R EOS) =
k∑

n=1

{nν+ c(cn−1− 1)/(c− 1)}qn

= νQ′(1)+ {1

/
(c− 1)}

k∑
n=1

cnpn −{c/(c− 1)}
k∑

n=1

qn

= νLR EOS + c/(c− 1)−q0/{q0(cλ,µ, ν, k)(c− 1)}+ q0

(4.6)

In a real life situation, customers who balk or renege represent the business lost. Customers are
lost to the system in three ways, due to balking, due to finite buffer restriction and due to reneging.
Management would like to know the proportion of total customers lost in order to have an idea of
total business lost.
Hence the mean rate at which customers are lost (under R BOS) is

λ−λe
(R BOS) + avgrr(R BOS) = λ−µ(1− p0) (4.7)

and the mean rate at which customers are lost (under R EOS) is

λ−λe
(R EOS) + avgrr(R EOS) = λ−µ(1− q0) (4.8)

These rates helps in the determination of proportion of customers lost which is of interest to the
system manager as also an important measure of business lost. This proportion (under R BOS) is
given by

λ−λe
(R BOS) + avgrr(R BOS)

/
λ=1− (µ/λ)(1− p0)

and the proportion (under R EOS) is given by

λ−λe
(R EOS) + avgrr(R EOS)

/
λ= 1− (µ/λ)(1− q0)

The proportion of customer completing receipt of service can now be easily determined from the
above proportion.
The customers who leave the system from the queue do not receive service. Consequently, only

those customers who reach the service station constitute the actual load of the server. From the
server’s point of view, this provides a measure of the amount of work he has to do. Let us call the
rate at which customers reach the service station as λs .Then under R BOS

= λe
(R BOS)

{
1−

k∑
n=2

(n− 1)νpn/λ
e
(R BOS)

}

= λe
(R BOS) − avgrr(R BOS)

= µ(1− p0)



Choudhury and Medhi: Performance Evaluation of a Finite Buffer System with Varying Rates of Impatience
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In case of R EOS, one needs to recall that customers may renege even while being served and
only those customers who renege from the queue will not constitute any work for the server. Thus,

λs
(R EOS) = λe

(R EOS)(1-proportion of customers lost due to reneging out of those joining the system)

= λe
(R EOS)

{
1−

k∑
n=2

(n− 1)νqn/λ
e
(R EOS)

}

= λe
(R EOS) − avgrr(R EOS)

= µ(1− q0)

5. Sensitivity Analysis
We have assumed that there are essentially four parameters viz: λ,µ, ν, k relating to the stochastic

nature of arrival, service, reneging patterns and system size. Various reasons may influence these
parameters so that on different occasions these may undergo change. From managerial point of
view, an idle server is a waste. So also for low server utilization. It is therefore interesting to examine
and understand how server utilization varies in response to change in system parameters. We place
below the effect of change in these system parameters on server utilization. For this purpose, we
shall follow the following notational convention in the rest of this section.
pn (λ,µ, ν, k) and qn (λ,µ, ν, k) will denote the probability that there are ’n’ customers in a

system with parameters in (λ,µ, ν, k) stead state under R BOS and R EOS respectively.
i. Let λ1 >λ0, then

p0(λ1,µ,ν,k)

p0(λ0,µ,ν,k)
< 1

⇒ (λ0−λ1)

µ
+ (1−1/k)(λ0

2−λ1
2)

µ(µ+ν+c)
+ ...+ (1−1/k)...{1−(k−1)/k}(λ0

k−λ1
k)

µ(µ+ν+c)...{µ+(k−1)ν+c(ck−1−1)/(c−1)}
< 0

which is true. Hence p0 ↓ as λ ↑.
ii. Let µ1 >µ0, then

p0(λ,µ1,ν,k)

p0(λ,µ0,ν,k)
> 1

⇒ λ
(

1
µ0

− 1
µ1

)
+λ2(1− 1/k)..

{
1

µ0(µ0+ν+c)
− 1

µ1(µ1+ν+c)

}
+ . . .+

+λk(1− 1/k)(1− 2/k)...{1− (k− 1)/k}

{ 1

µ0(µ0+ν+c)...{µ0+(k−1)ν+c(ck−1−1)/(c−1)}
−

1

µ1(µ1+ν+c)...{µ1+(k−1)ν+c(ck−1−1)/(c−1)}

}
> 0

which is true. Hence p0 ↑ as λ ↑.
iii. Let v1 > v0, then

p0(λ,µ,ν1,k)

p0(λ,µ,ν0,k)
> 1

⇒ λ2(1− 1/k)
{

1
µ(µ+ν0+c)

− 1
µ(µ+ν1+c)

}
+ ...

+λk(1− 1/k)(1− 2/k)....{1− (k− 1)/k}

{ 1

µ(µ+ν0+c)...{µ+(k−1)ν0+c(ck−1−1)/(c−1)}
−

1

µ(µ+ν1+c)...{µ+(k−1)ν1+c(ck−1−1)/(c−1)}

}
> 0

which is true. Hence p0 ↑ as v ↑.
iv. Let k1 > k0, then

p0(λ,µ,ν,k1)

p0(λ,µ,ν,k0)
< 1

⇒
k0∑
n=1

λn
n∏

r=1

{1−(r−1)/k0}

n∏

r=1

{µ+(r−1)ν+c(cr−1−1)/(c−1)}
−

k1∑
n=1

λn
n∏

r=1

{1−(r−1)/k1}

n∏

r=1

{µ+(r−1)ν+c(cr−1−1)/(c−1)}
< 0

which is true. Hence p0 ↓ as k ↑.
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The following can similarly be shown
v. q0 ↓ as λ ↑
vi. q0 ↑ as µ ↑
vii. q0 ↑ as v ↑
viii. q0 ↓ as k ↑
Under R BOS, these results state that an increase in arrival rate would result in lowering of the

fraction of time the server is idle. An increase in service rate would mean the server is able to work
efficiently so that it can process same amount of work quickly. This translates to higher server idle
time. An increase in reneging rate would mean the server has fewer work to do and hence higher
fraction of idle time. An increase in system size translates to the lowering of the fraction of time
the server is idle. Similar conclusions can be drawn under R EOS.

6. Numerical Example
To illustrate the use of our results, we apply them to a queuing scenario. We quote below an

example from Taha (2003, page 610).
‘The time for barber Joe to give a haircut is exponential with mean of 12 minutes. Because of

his popularity, customers usually arrive (according to a Poisson distribution) at a rate much higher
than Joe can handle 6 customers per hour. Joe really will feel comfortable if the arrival rate is
effectively reduced to about 4 customers per hour. To accomplish this goal, he came up with the
idea of providing limited seating in the waiting area so that newly arriving customers would go
elsewhere when they discover that all the seats are taken. How many seats should Joe provide to
accomplish his goal?’
This is a design problem where the system manager (Joe, the barber) desires a system design in

respect of size of the waiting area (number of chairs for waiting customers).
Here λ= 6/hr and µ=5/hr. As required by Joe, we examine the effect of limited seating arrange-

ment in the waiting area with different choices of k. Though not explicitly stated, it is necessary to
assume reneging and balking. Customers these days are very hard pressed for time. Prompt cus-
tomer service being the expectation, it is all the more reasonable to assume that customers are all
of reneging type. We shall assume that reneging distribution is state dependent following exp(vn)
where vn is as described in section 3. Specifically, we shall assume v = 0.1/hr and considered the
scenario with c= 1.05. Given the fact that service in a barbershop is being analyzed, clearly the
reneging rule would be R BOS. We further assume that the probability of balking by an arriving
customer is ‘i/k’, i= 1,2, . . . , k where i is the state of the customer observes the system to be in
on its arrival.
Various performance measures of interest computed under different scenarios are given in Table

in below. These measures were arrived at using a FORTRAN 77 program coded by the authors.
Different choices of k were considered. Results relevant with regard to Joe’s desire to limit arrival
rate of customers into his service station to something around 4/hr are presented in the table.

Since a larger waiting area would also entail additional expenditure/ investment, Joe needs to
examine how the performance measures differ across different choices of k. In case the reneging
behavior of customer follows exp(0.1) distribution and when c = 1.05, it appears from the above
table that an ideal choice of k could be 20 (seating space in waiting area =19) with λs = 3.99628.
Two interesting observations can be made from the above table. To a layman, Joe’s aim of

reducing λ from 6 to 4 effectively boils down to turning away one third of his customers. Our
analysis confirms the same. In the scenario examined above, the percentage of customers lost due
to reneging together with finite buffer at the level of ideal choice of k hovers very close to one third
at 33.39%. Second, at the level of λs nearest to 4, the fraction of time Joe would be idle (p0) is
almost constant at 20% in the above scenarios. This results stand to reason.
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Table 1. Performance measures assuming λ= 6/hr, µ= 5/hr, v= 0.1/hr and c=1.05

Size of Waiting Area
Performance Measure 19 20 21

(k=20) (k=21) (k=22)

λs (i.e. arrival rate of customers reaching service station) 3.99628 4.00249 4.00816

Effective arrival rate (λe) 5.40723 5.43109 5.45309

Fraction of time server is idle 0.20074 0.19950 0.19837

Average length of queue 1.17665 1.19069 1.20369

Average length of system 1.97590 1.99119 2.00532

Mean reneging rate 1.41095 1.42860 1.44494

Rate of loss due to balking and finite buffer 0.59277 0.56891 0.54691

Mean rate of customers lost 2.00371 1.99751 1.99184

Proportion of customers lost due to reneging, balking and finite buffer 0.33395 0.33292 0.33197

7. Conclusion
The analysis of a single server Markovian queuing system with state dependent balking and

position dependent reneging has been presented. Even though balking and reneging have been
discussed by others, explicit expressions are not always available. Besides, to the best of our knowl-
edge, modeling of position dependent reneging has not been attempted in literature. This paper
makes a contribution here. Closed form expressions of number of performance measures have been
derived. To study the change in the system corresponding to change in system parameters, sensi-
tivity analysis has also been presented. A numerical example has been discussed to demonstrate
results derived. The numerical example is of indicative nature meant to illustrate the benefits of
our theoretical results in a design context. The limitations of this work stem from the Markovian
assumptions. Extension of our results for general distribution is a pointer to future research.
Appendix

A. Derivation of P ′(1) under R BOS

Let P (s) denote the probability generating function, defined by P (s) =
∞∑
n=0

pns
n. From (3.2) we

have

λ{1− (n− 1)/k}pn−1 + {µ+nv+ c(cn− 1)/(c− 1)}pn+1 = λ{1−n/k}pn
+
{
µ+(n− 1)v+ c(cn−1− 1)/(c− 1)

}
pn ; n= 1,2, . . . , k− 1

Multiplying both sides of the equation by sn and summing over n

λs
k−1∑

n=1

{1− (n− 1)/k}pn−1s
n−1 −λ

k−1∑

n=1

(1−n/k)pns
n =

k−1∑

n=1

{µ+(n− 1)v+(cn− c)/(c− 1)}pns
n

−
1

s

k−1∑

n=1

{µ+nv+(cn+1− c)/(c− 1)}pn+1s
n+1

(A.1)

⇒ λs[p0s
0 + (1− 1/k)p1s

1 + ...+ {1− (k− 1)/k}pk−2s
k−2]− λ[(1− 1/k)p1s

1 + (1− 2/k)p2s
2 + ...+

{1 − (k − 1)/k}pk−1s
k−1 = µ(p1s

1 + ... + pk−1s
k−1) + ν{p2s

2 + 2p3s
3 + ... + (k − 1)pks

k + {1/(c−
1)}{cp1s+c2p2s

2+ ...+ck−1pk−1s
k−1−c(p1s

1+ ...+pk−1s
k−1}− (1/s)[µ(p2s

2+ ...+pks
k)+ν{p2s

2+
2p3s

3 + ...+(k− 1)pks
k + {1/(c− 1)}{c2p2s

2 + ...+ ckpks
k − c(p2s

2 + ...+ pks
k}

⇒ λs[(p0s
0+ ...+pk−2s

k−2)−(1/k){p1s+2p2s
2+ ...+(k−2)pk−2s

k−2}]−λ[(p1s
1+ ...+pk−1s

k−1)−
(1/k){p1s+2p2s

2+ ...+(k−1)pk−1s
k−1}] = µ{P (s)−p0−pks

k}+νs{2p2s+ ...+(k−1)pk−1s
k−2}−



Choudhury and Medhi: Performance Evaluation of a Finite Buffer System with Varying Rates of Impatience
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νs(p2s+ ...+ pk−1s
k−2) + {1/(c− 1)}{P (cs)− p0 − ckpks

k − cP (s)+ cp0 + cpks
k}− (1/s)[µ{P (s)−

p0− p1s}+ νs{2p2s+ ...+kpks
k−1}− νs(p2s+ ...+ pks

k−1)+ {1/(c− 1)}{P (cs)−p0− cP (s)+ cp0}]

⇒ λs[{P (s)− pk−1s
k−1 − pks

k} − (s/k){P ′(s)− (k − 1)pk−1s
k−2 − kpks

k−1}]− λ[{P (s)− pks
k −

p0} − (s/k){P ′(s)− kpks
k−1}] = µ{P (s)− p0 − pks

k}+ νs{P ′(s)− p1 − kpks
k−1} − ν{P (s)− p0 −

p1s− pks
k}+ {1/(c− 1)}{P (cs)+ p0(c− 1)− cP (s)− cpks

k(ck−1 − 1)}− (µ/s){P (s)− p0 − p1s}−
ν{P ′(s)− p1}+(ν/s){P (s)− p0− p1s}−{1/(c− 1)s}{P (cs)+ p0(c− 1)− cP (s)

⇒{(λs/k)+ ν}P ′(s)(1− s)= (ν/s)P (s)(1− s)− (µ/s)P (s)(1− s)+ (µ/s)p0(1− s)− (ν/s)p0(1−
s)−{P (cs)(1−s)/(c−1)s}− (p0/s)(1−s)+λP (s)(1−s)+{µ+(k−1)+c(ck−1−1)/(c−1)}pks

k−
{µ− ν + νk+ c(ck−1 − 1)/(c− 1)}pks

k

⇒ {(λs + kν)/k}P ′(s) = [(ν/s) − (µ/s) + λ + c/{s(c − 1)}]P (s) + {(µ/s) − (ν/s) − 1/s}p0 −
P (cs)/{(c− 1)s}
Now

lim
s→1−

P ′(s) = lim
s→1−

{k/(λ+ kν)}[{(ν/s)− (µ/s)+λ+ c/(c− 1)s}P (s)+

{(µ/s)− (ν/s)− 1/s)p0−{P (c)/(c− 1)s}

⇒P ′(1) = {k/(λ+ kν)}[λ− (µ− ν)(1− p0)− p0 + {c−P (c)}/(c− 1)] (A.2)

Here P (c) =
k∑

n=0

pn(λ,µ, ν, k)c
n where the symbol pn(λ,µ, ν, k) is as described in section 5. We

use pn and pn(λ,µ, ν, k) interchangeably. However should any of the parameters λ,µ, v, k change, it
is explicitly stated. To obtain a closed form expression for P (c), let us for the time being, consider
another queuing system with parameter and assumptions similar to the queuing system we are
presently considering except that the arrival rate is ’cλ’. For this new system, the steady state
equations are same as (3.1), (3.2) and (3.3) with ’λ’ replaced by ’cλ’. Denoting the steady state
probabilities of this new system by pn(cλ,µ, ν, k), we can obtain

pn(cλ,µ, ν, k) =

[
(cλ)

n

n∏

r=1

{1− (r− 1)/k}/

{
n∏

r=1

(
µ+r− 1v+ ccr−1− 1/c− 1

)
}]

p0(cλ,µ, ν, k)

; n=1,2, . . . , k
(A.3)

where

p0(cλ,µ, ν, k)=

[
1+

k∑

n=1

(cλ)
n

n∏

r=1

{1− (r− 1)/k}/

{
n∏

r=1

(
µ+r− 1v+ ccr−1− 1/c− 1

)
}]−1

(A.4)

Let P (S; cλ,µ, ν, k) denotes the probability generating function of this new queuing system so that

P (S; cλ,µ, ν, k)=
k∑

n=0

pn(cλ,µ, ν, k)s
n

Now

P (c) =
k∑

n=0

pn(λ,µ, ν, k)c
n

= p0 +
k∑

n=1

[
(cλ)

n
n∏

r=1

{1− (r− 1)/k}

/
{

n∏
r=1

(µ+ r− 1ν+ ccr−1− 1
/
c− 1)}

]
p0

⇒ [{P (c)− p0}/p0] =
k∑

n=1

[
(cλ)

n
n∏

r=1

{1− (r− 1)/k}

/
{

n∏
r=1

(µ+ r− 1ν+ ccr−1− 1
/
c− 1)}

]
p0

(A.5)
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Now putting S = 1 in P (S; cλ,µ, ν, k) we get

P (1; cλ,µ, ν, k)= p0(cλ,µ, ν, k)+
k∑

n=1

pn(cλ,µ, ν, k)

⇒ 1= p0(cλ,µ, ν, k)+
k∑

n=1

[
(cλ)

n
n∏

r=1

{1− (r− 1)/k}

/
{

n∏
r=1

(µ+ r− 1ν+ ccr−1− 1
/
c− 1)}

]
p0(cλ,µ, ν, k)

⇒ 1= p0(cλ,µ, ν, k)+ {(P (c)− p0)/p0}p0(cλ,µ,ν,k)
⇒ P (c)= p0/p0(cλ,µ, ν, k)

(A.6)
{using (A.3) and (A.5)}
Similarly under R EOS,

Q(c) = q0/q0(cλ,µ, ν, k) (A.7)

Using equation (A.6) in (A.2) we obtain

P ′(1) = {k/(λ+ kν)}[λ− (µ− ν)(1− p0)− p0 + {c− p0/p0(cλ,µ, ν, k)}/(c− 1)] (A.8)

where p0(cλ,µ, ν, k) is given in (A.4).

B. Derivation of Q′(1) under R EOS
From equation (3.7), we have

λ{1− (n− 1)/k}qn−1+ {µ+(n+1)ν+ c(cn− 1)/(c− 1)} qn+1 = λ(1−n/k)qn
+
{
µ+nν+ c(cn−1− 1)/(c− 1)

}
qn;n= 1,2, . . . , k− 1

Multiplying both sides of this equation by sn and summing over n we get

λs
k−1∑
n=1

{1− (n− 1)/k}qn−1s
n−1 −λ

k−1∑
n=1

{1−n/k}qns
n =

k−1∑
n=1

{µ+nν+(cn − c)/(c− 1)}qns
n

− 1
s

k−1∑
n=1

{µ+(n+1)ν+(cn+1 − c)/(c− 1)}qn+1s
n+1

(B.1)

Proceeding in a manner similar to previous section, we obtain

Q′(1) = {k/(λ+ kν)}[λ−µ(1− q0)− q0+ {c− q0/q0(cλ,µ, ν, k)}/(c− 1)] (B.2)

where

q0(cλ,µ, ν, k) =

[
1+

k∑

n=1

(cλ)
n

n∏

r=1

{1− (r− 1)/k}

/
{

n∏

r=1

(µ+ rν+ ccr−1 − 1
/
c− 1)}

]−1

(B.3)
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54 İSTATİSTİK: Journal of the Turkish Statistical Association 6(1), pp. 42–55, c© 2013 İstatistik
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İSTATİSTİK: Journal of the Turkish Statistical Association 6(1), pp. 42–55, c© 2013 İstatistik 55
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